
The Ambar Approach to Data Streaming

Ambar Cloud Ltd.

January 8, 2024

Contents

1 Introduction 1

2 Data Streaming Done Right 2

3 Multi-Topic Operational Model 3

4 Correctness 4
4.1 Representation . 4
4.2 Order Preservation . 5
4.3 Basic Results . 5

4.3.1 Theorem: representation of composites 5
4.3.2 Theorem: respective representation of composites . . . 5
4.3.3 Theorem: order preservation of composites 6

4.4 Correctness Condition . 6
4.5 At-Least Once vs. Exactly Once 6

5 Conclusion 7

1 Introduction

Reacting to customer behavior in real time is the lifeblood of modern busi-
nesses, and doing so requires the use of stream processing software. But
stream processing software lacks appropriate correctness guarantees out-of-
the-box, whether open source or a proprietary cloud service. So engineering
teams spend years implementing correctness guarantees themselves, but even
the best teams retain error rates above 0.2%. In verticals such as finance,
logistics, e-commerce, sports betting, and stock trading – where operating
profits range from 1% to 10% of the total value flowing through the business

1

– even low error rates translate to significant profit losses. According to
Gartner reports, this area of cloud computing is a $70B+ market, projected
to grow >20% YOY through to 2026.

The issue is that existing solutions adopt a myopic viewpoint. They focus
on the problem of streaming the raw data itself, with no consideration for the
ingress or egress of said data (a decidedly non-trivial task). At Ambar, our
mission is to solve this problem holistically. This allows us to both lower the
barrier to entry for real-time stream processing, and increase the reliability
of end-to-end streaming solutions. We believe Ambar is not only the easiest
way to get started with real-time stream processing, but is also the most
robust.

Part of our holistic approach is the formal modeling of the entire stream
processing problem, including both ingress and egress. This formal approach
allows us to prove our algorithms correctly stream data to our customers,
from its point of origin to its point of use, in a way that enables them to
focus on application logic rather than infrastructure arcana.

In this white paper, we present our formal model of the data streaming
problem, along with some preliminary proofs that give us concrete, sufficient
requirements for the system we’ve implemented.

2 Data Streaming Done Right

What does it mean to stream data correctly? Answering this question pre-
cisely is at the heart of our efforts. From the application developer’s per-
spective, the correctness requirement is that the system should allow them
to consume streams in-order, and exactly once. Practical experience also
tells us that the system needs to support partitioning if it has any hope of
meeting equally important performance requirements. As with all interesting
problems, the simplicity belies the complexity. We must be confident that
as the data passes through our system, it undergoes only transformations
which are guaranteed to preserve these requirements.

In the following sections, we give a high-level model of the architecture of
an Ambar cluster built on a Kafka substrate, build the definitions required for
stating our correctness condition, and prove the existence of certain sufficient
conditions for the correctness of our cluster implementation in terms of this
model.

2

Figure 1: The architecture of an Ambar cluster.

3 Multi-Topic Operational Model

The model of an ambar cluster is shown in figure 1.
Generally, an Ambar cluster provides an in-order, at least once deliv-

ery service to customers. More specifically, it transports sequences of data
items called records from sources to destinations, while preserving order, and
providing aggregation and filtering capabilities.

A data source is a durable storage system which contains a set of record
sequences. An Ambar cluster supports any number of data sources (e.g.,
MySQL, PostgreSQL, EventstoreDB).

A connector is a process which is responsible for reading record sequences
from a data source, and producing them to an internal Kafka cluster. There
is one connector for each data source. Each connector produces records to
its own Kafka topic. In general, the number of partitions for each Kafka
topic will be significantly fewer than the number of record sequences in the
corresponding data source. The process of reading records and producing
them to Kafka is referred to as ingestion.

A projector is a process responsible for transmitting record sequences
from the internal Kafka cluster to the data destinations, which are idempo-

3

tent HTTP endpoints owned by the client. There is one projector for each
data destination, and any number of data destinations are supported. Pro-
jectors allow clients to specify filters, which select subsequences of records
from the complete set of records stored in the system. Conceptually, these
work by applying a predicate over an arbitrary merger of all record sequences,
and submitting requests to the destinations for only those which match the
filter.

4 Correctness

This section contains a correctness proof for an Ambar system, in terms of
the model given above. Note that this is a proof of the system, rather than
any specific implementation of said system. It is therefore analgous to a
correctness proof for an algorithm as opposed to a function/routine. As a
necessary precedent, this section also defines rigorously what it means for an
ambar system to be considered correct.

In the following subsections, we will assume the following definitions.

• Let R be a set of records.

• Let R∗ be the set of all sequences formed from elements of R.

• Let f and g be total functions mapping between elements of R∗.

• Let m be a k-dimensional function from R∗k to R∗. That is, it maps a
k-tuple of elements from R∗ to a single element of R∗.

• For a sequence S, let S[i : j) be the subsequence Si...Sj−1.

• When convenient, we treat sequences as sets. In other words, for a
sequence S, we say r ∈ S iff ∃i : Si = r.

4.1 Representation

We say that f(S) = S
′ is representative if

∀r ∈ S, ∃r′ ∈ S
′
: r

′
= r

We say that f is representative if it is representative over its entire do-
main.

For an arbitrary predicate p over R, we say that f(S) = S
′ is represen-

tative with respect to p if

4

∀r ∈ S : p(r) =⇒ ∃r′ ∈ S
′
: r

′
= r

We say that a function f represenative with respect to a predicate p if it
is representative with respect to p over its entire domain.

We say that m is representative if it is representative in each of its argu-
ments.

4.2 Order Preservation

We say that f(S) = S′ is order preserving if

S
′
i = Sj =⇒ ∀r∈S[1:j)(r ∈ S

′
=⇒ r ∈ S

′
[1 : i))

We say that f is order preserving if it is order preserving over its entire
domain.

We say that m is order preserving if it is order preserving in each of its
arguments.

4.3 Basic Results

4.3.1 Theorem: representation of composites

If f is representative, and g is representative, then f ◦ g is representative.
Proof: Let S be an element of R∗. Since g is representative, all of the

elements of S appear in g(S). Since f is representative, all of the elements
of g(S) appear in f(g(S)). Hence, all elements of S appear in (f ◦ g)(S).
Therefore, (f ◦ g)(S) is representative.

4.3.2 Theorem: respective representation of composites

If f is representative with respect to some predicate p over R, and g is repre-
sentative with respect to some predicate q over R, then f ◦g is representative
with respect to p ∧ q.

Proof: Let S be an element of R∗. Since g is representative with respect
to q, g(S) contains all the elements of S which satisfy q. Since f is repre-
sentative with respect to p, f(g(S)) contains all the elements of g(S) which
satisfy q. Hence, f(g(S)) contains all the elements of S which satisfy p ∧ q,
and f ◦ g is representative with respect to p ∧ q.

5

4.3.3 Theorem: order preservation of composites

If f is order preserving and representative, and g is order preserving and
representative, then f ◦ g is order preserving and representative.

Proof: By contradiction. Suppose f ◦ g is not order preserving and
representative.

If it is not representative, then for some sequence S, there exists an
element r from that sequence which is not represented in (f ◦ g)(S). This
would imply that either f is not representative, or g is not representative,
either of which would be a contradiction.

On the other hand, suppose it is not order preserving. Let (f ◦g)(S) = S′

be a sequence for which it is not order preserving. Then there exists a pair
of indices (i, j) such that:

S
′
i = Sj ∧ ∃r∈S[1:j)(r ∈ S

′ ∧ r /∈ S
′
[1 : i))

Since g is order preserving and representative, we can conclude that Sj

and r both exist in g(S), and that the first appearance of Sj is prior to the
first appearance of r therein.

Similarly, since f is order preserving and representative, we can conclude
that Sj and r both appear in f(g(S)), and that the first appearance of Sj is
prior to the first appearance of r therein. This contradicts our assumption
that f ◦ g is not order preserving, and concludes our proof.

4.4 Correctness Condition

With the basic definitions above, we are ready to state our correctness con-
dition, and show that it applies to our system model. We say that an Ambar
system is correct if, for every data destination with associated filter predicate
p, there exists an order-preserving function f , representative with respect to
p, such that the sequence of records successfully submitted to the data des-
tination’s associated endpoint is the image of that function over the set of
all record sequences.

Thus, if we can construct a system which transforms record sequences in
accordance with a function having the above properties, we can be confident
in its correctness.

4.5 At-Least Once vs. Exactly Once

The astute reader will recognize that our correctness condition provides at-
least once delivery of each record, rather than exactly-once. This is an

6

instance where our holistic approach informed our strategy. Idempotency is
a very simple operation for customer endpoints to implement with the sort
of data that is common to real-time streams. In concert with at-least once
delivery, this idempotency provides exactly-once semantics, and provides
us considerable breathing room in our implementation, which allows us to
provide not only a more performant system, but also a more robust one.

5 Conclusion

In this white paper, we shared the formal model we use to architect the top
level of our system, but it’s important to note that the complexity doesn’t
stop there. Connectors, projectors, and the underlying message brokers must
meet similar guarantees. Meeting those guarantees in the presence of prac-
tical roadblocks common to distributed systems like zombie fencing, server
availability, data durability, load fluctuation, memory limits, and clock errors
is a significant problem in its own right. We’ve done that too.

We’ve achieved guarantees for connectors to popular DBMSs (e.g., MySQL,
PostgreSQL, EventstoreDB), which involved developing different algorithms
for checkpointing and ingestion because each DMBS comes with its own in-
ternal mechanics and guarantees. We’ve also achieved guarantees for our
projector (compatible with every connector) and for Kafka as an underly-
ing message broker. In other words, we’ve achieved guarantees that provide
end-to-end correctness to Ambar customers.

At Ambar, our goal is to democratize robust data streaming. Much like
ACID brought robustness to databases, Ambar brings robustness to stream
processing. As the first provably correct end-to-end data streaming solution,
we empower engineers to build stream processing systems dependably, with
less cognitive load, while eliminating errors that put businesses at risk.

7

	Introduction
	Data Streaming Done Right
	Multi-Topic Operational Model
	Correctness
	Representation
	Order Preservation
	Basic Results
	Theorem: representation of composites
	Theorem: respective representation of composites
	Theorem: order preservation of composites

	Correctness Condition
	At-Least Once vs. Exactly Once

	Conclusion

